Archivo del sitio

¿Qué es el compression set? – Volumen 1

En castellano la definición más correcta que he encontrado es “deformación permanente por compresión”, y se refiere al grado de deformación de un elastómero debido a una exposición prolongada a una carga de compresión.

Este asunto es de vital importancia en aplicaciones industriales de sellado de equipos, tanto estáticas como dinámicas, donde los materiales elastómeros son ampliamente utilizados.

Los materiales elastómeros

Debemos partir del conocimiento básico de los elastómeros, que pueden ser de origen natural o sintético, y cuyo proceso de fabricación puede concluir con la vulcanización, que realiza un cohesión de sus moléculas, dotándo al material de unas propiedades muy interesantes.

En general los elastómeros tienen un inconveniente, y es que conforme se fabrican, comienza un proceso de envejecimiento por oxidación que hace que pierda resistencia y elasticidad, este puede ser en días o en años hasta que pierda sus propiedades, pero existe, si no, me quedaría sin artículo ;). Incluso existiendo normas y técnicas sobre su fabricación (con aditivos específicos para retardar este efecto), conservación (almacenamiento controlado en temperatura, humedad, etc), y uso (condiciones ambientales de funcionamiento), es conocido que un elastómero envejece y pierde propiedades.

Todos hemos observado en nuestra propia casa con diferentes elementos como la suela de los zapatos que se endurece, las gomas de pollo que sujetan nuestros cables o cromos que se rompen, incluso los neumáticos de nuestros coches o motos que pierden adherencia, y es que, con el pasar de los años, lo que inicialmente tenía una elasticidad envidiable, y un aspecto “gomoso” muy apetecible :), se torna liso y brillante (por una capa externa endurecida), y con una elasticidad y otras propiedades desaparecidas, incluso llegando al agrietamiento o rotura del material ante una deformación mínima.

Ahora vamos a llevar todo esto al campo de la industria, y en concreto a las aplicaciones de estanqueidad o sellado, que es donde queremos llegar, ya que allí el compression set, o deformación permanente por compresión, cobra una importancia notable, produciendo numerosos problemas en la industria, aunque algunos no quieran reconocerlo 😉

Fuente:Wikipedia

No quiero hacer una lista de materiales elastoméricos, pues es vastamente conocido el uso de diferentes elastómeros para el sellado desde muchas décadas atrás hasta hoy; pero me estoy dando cuenta que la voy a tener que hacer para satisfacer vuestras ansias de conocimiento, pues ya oigo a la gente agolpándose bajo mi ventana para reivindicar un listado mínimo. En este hay una mezcla entre términos técnicos, marcas y “palabros de uso común”; vaya por delante que no está completa, pues sería tarea ardua y quizás mejor que consultéis la ISO 1689:

  • NBR. Nitrilo butadieno, BR, buna-N, Perbunan®, goma-lona (combinación NBR con textil)…
  • EP. Etileno propileno con variantes como EPDM, EP962…
  • FKM. Fluoroelastómeros, FPM, Vitón®…
  • VQM. Silicona, SI, comenzando con las famosas “goma-lona”, hasta llegar al más avanzado compuesto en materia química como son los perfluoroelastómeros, pasando por los nitrilos butadienos (NBR o buna), buna
  • PU. Poliuretanos, PUR, TPU, TPE, AU, EU…
  • FPKM. Perfluoroelastómeros, FFKM, Kalrez®…
  • CR. Chloroprene, Neopreno®…

Qué mejor ilustración para este artículo que la vista esquematizada de un elastómero en reposo (A), y el mismo sometido a tensión (B).

Vaya rollazo os he estado explicando hasta ahora, y aún no hemos empezado con el compression set. Pero no se vayan todavía ¡aun hay más!

La memoria y la estanqueidad

Por si alguien lo dudaba, existe una necesidad básica para conseguir estanqueidad en un sistema, y es la memoria.

Si tienes un poro en un globo que acabas de llenar de agua, instintivamente pones el dedo para que deje de salir, y juegas a mojar a los de al lado. Y así será hasta que olvides porqué tenías el dedo allí, y vuelva a salir agua. Memoria.

Si ponéis un parche en una cámara o neumático se quedará allí hasta que olvide cual era su función y vuelva a perder aire (aunque puedan pasar años). Memoria.

Si ponéis una junta planta en cualquier sitio, y apretáis los tornillos que la aprisionan, estáis dotando al sistema de una carga, que debería permanecer ahí “para siempre” y así tener estanqueidad. Memoria.

Os podría dar cientos de ejemplos más de como el hombre dota a los materiales o a un sistema de memoria para evitar fugas (esta frase con hombre y memoria, es caldo de cultivo para mujeres 🙂 )

¿Y qué pasa si el material o sistema pierde u olvida la memoria? ¡pues averías!

¿Por qué es importante este punto? Aunque breve (con mi mal llevaba brevedad), porque el compressión set, es un proceso por el cual un elastómero pierde la memoria, y deja de realizar su función de estanqueidad, y… ¡avería!

¿Nos vas a explicar de una p*** qué es el compression set? Si. En el próximo artículo

 

Historia breve de la empaquetadura – 2

En la década de los 80…

Tras la prohibición del uso del amianto, se ha ido avanzando en todo tipo de fibras sintéticas, y se han recuperado algunas naturales. Aparecen las aramidas como el Kevlar®, el poliacrilonitrilo (PAN), y…….¡¡¡el politetrafluoruro de etileno (PTFE)!!! ¡¡¡el Teflón®!!! Por supuesto todos las fibras hace tiempo que estaban descubiertas, pero hacen su irrupción en las empaquetaduras en esta época.

Fuente: Tropfen

Fuente: dongga BS

El PTFE o teflón (nombre dado por DuPont al polímero de su invención que ha dado nombre al material), tiene una resistencia a la tracción elevada, es un material inerte, así que se comporta bien químicamente, y tiene el coeficiente de fricción más bajo conocido (0,125), así que ¡todo el mundo a hacer empaquetadura de teflón! Sin embargo, tiene un pequeño problema, y es que aproximadamente 315ºC se carboniza, y a 325ºC empieza a emitir vapores un “pelín” chungos…

La aramida o kevlar (nombre dado por DuPont al polímero de su invención que ha dado nombre al material), es una poliamida con una resistencia a la tracción “im-presionante”, 7 veces mayor que la del teflón, aunque las temperaturas andan por valores similares, es capaz de soportar mayores presiones. Como inconvenientes es que es un pésimo conductor de calor, y además tiene un elevado coeficiente de fricción, así que  hay que vigilar que no quede sin lubricar…

El poliacrilonitrilo (PAN), no es tan famoso como los anteriores, pero al igual que las anteriores es una fibra polimérica, con una buena resistencia química (pH 2-13), y que es capaz de alcanzar temperaturas de hasta 250ºC. ¡¡¡Pero!!! Esta sí que es una excelente conductora de calor, perfecto para una empaquetadura, y además tiene un coeficiente de fricción cercano al teflón. Así que esta dió paso a las empaquetaduras actuales…

El teflón aparece también en forma de lubricante, y sigue haciéndolo actualmente.

Y los 90…

Llegan los híbridos. Quedando ya pocas cosas por descubrir, el personal se dedica a hacer híbridos con las fibras existentes, pero se da un salta cualitativo a través del grafito y el carbón.

Fuente: Wikipedia

A partir de fibras de rayón (viscosa), se fabrican hilos que se impregnan con grafito en diferentes concentraciones, en función de la aplicación y necesidad (y precio). A partir de un 95% de grafito, se considera grafito puro, en menores porcentajes, de 80 a 95% se considera carbón, y por debajo, encontramos el denominado pitch y otras fibras más baratas, que poseen muchas impurezas, y por tanto tienen un menor rendimiento.

El grafito, es el material del que se hacen las minas de lápiz, así que imaginar un lápiz rozando contra un eje de acero girando, pues más o menos eso hará una empaquetadura de este tipo. El grafito es autolubricante, tiene un coeficiente de fricción de 0,01, y aguanta pH desde 0 a 14 ¡ideal! Encima, como mineral aguanta hasta 1000ºC, y es un excelente conductor de calor ¿qué más podemos medir?

El mismo grafito se puede manipular como lubricante en otras empaquetaduras, así que unimos sus propiedades como lubricante, a las de otras fibras anteriormente citadas.

Os recomiendo leer esta información sobre el grafito, donde aparte de información técnica, leeréis sobre la invención del lápiz, y, ojo al “palabro”: levitación diamagnética ¡alucinante!

Pues nada, ya conocéis un poco de historia sobre empaquetaduras, y un montón de información técnica sobre ellas. Ni que dedir tengo, que todas las fechas escritas, y algunos datos, son orientativos, y tratan de reflejar “momentos cumbre”, o sea, que no tengo ningún rigor periodístico…(siento decepcionaros)

Y cualquier corrección, aclaración, apunte o aportación será bienvenida.

Historia breve de la empaquetadura – 1

Del autor de ¿qué es una empaquetadura? y ¿cómo es una empaquetadura? llega a sus pantallas “Historia breve de la empaquetadura”. Si pensabas que las segundas partes no eran buenas, espera a leer la tercera…y la cuarta…

Me ha parecido interesante hacer un poco de repaso histórico a la evolución de las empaquetaduras, y como es un tema amplio, me han salido dos partes.

Como ya habíamos hablado anteriormente, los tres parámetros con los que podemos jugar en una empaquetadura son su geometría y trenzado, las fibras, y el lubricante. Cada una de ellas ha ido evolucionando o adaptándose a los cambios en la industria, al avance de la técnica, y por supuesto a las necesidades, eso es lo que trataré de mostraros.

El primer cambio que sufrió la empaquetadura con el paso de los años fue su forma, que básicamente ha evolucionado con la técnica que ha permitido fabricar una empaquetadura cada vez más efectiva. Las primeras empaquetaduras, hasta la década de los 50, eran redondas, y se trenzaban igual que una cuerda; aun podemos encontrar cajeras de bombas muy antiguas con las paredes preparadas para compactar esta empaquetadura redonda; más tarde se comenzó a saber como trenzar una empaquetadura cuadrada, pero con los cantos aún bastante redondeados; finalmente, con la evolución de la fibras, se consiguieron hacer refuerzos y formas que formaban un cuadrado muy compacto, perfecto para rellenar toda la cajera. En la foto podéis observar su evolución, y cómo su forma ha ido “llenando” de mejor manera la cajera.

Pese a ir de la mano en lo anteriormente comentado, la evolución de empaquetaduras está sobre todo ligada a las fibras, y también a la de sus lubricantes, y como tratamos en el artículo anterior, a la evolución de los trenzados. Por ejemplo, muchas personas cuando una empaquetadura se ha quedado sin lubricante, decimos que “ha muerto”.

Hasta la década de los 50…

Las fibras eran básicamente vegetales, algodón, lino, yute, y una de las mejores, el ramio (se encontraba en pantanos). Las ventajas básicas es que son materiales que tienen un bajo coste porque se encuentran en la naturaleza, se pueden enlazar fácilmente entre ellas, y tienen una buena resistencia a la descomposición. Su primer inconveniente es su baja resistencia química, de pH 5 a 9, y sólo se pueden usar para trabajar con temperaturas por debajo de 60-80ºC, tienen una baja resistencia a la tracción, y muy importante, no disipan el calor (recordar que una empaquetadura actúa por fricción, y eso genera calor).

Los lubricantes hasta estos años han sido las grasas animales, sobre todo la de cerdo, por aquello de que siempre ha habido muchos cerdos jejeje. La mejor de las grasas animales para empaquetaduras, era la de ballena ¡para que veáis hasta donde llega el aprovechamiento de algunos animales! Y ahí lo dejo…

En la década de los 50…

¡¡¡Llegó el amianto!!! El amianto es un mineral, que podemos encontrar en la naturaleza, y se posicionó rápidamente por encima de todas las empaquetaduras existentes porque es químicamente inerte, y aguanta líquidos con pH 0-14. Además trabajaba hasta los 550ºC y aguantaba grandes presiones por sus buenas propiedades mecánicas. El amianto estaba formado por unas fibras, que en función de su longitud tenían mayor o menor calidad (más largas, mejores). Existían varias calidades, como los que se usaron en materiales de construcción, e incluso en aislantes de estufas y tostadores, de color grisáceo, y el amianto azul, que se extraía de África, que tenía una mayor resistencia química. De hecho, la única incompatibilidad química que se conoce del amianto (o que yo conozca), es el ácido sulfúrico fumante, y no os recomiendo estar cerca. Pero aunque algunos lo recuerden como la 8ª maravilla, tenía varios inconvenientes, algunos técnicos, y uno mortal.
En primer lugar, era un material que tenía un coeficiente de fricción de 3, de hecho se utilizaba para hacer discos de freno, así que parece una incongruencia utilizarlo como material para rozar contra un eje de acero ¿no? Además no tenía ninguna capacidad de evacuar temperatura, eso hacía que el lubricante que acompañaba al amianto en la empaquetadura, desapareciera rápidamente y dejara de hacer su función.
“Lo peor de todo”, después de llevar bastantes años en el mercado, y pese que hacía mucho tiempo que se conocían los aspectos peligrosos de su manipulación, a raíz de una denuncia de una empresa que colocaba placas en el interior de submarinos, que habían padecido unas cuantas muertes por lo que más tarde se conoció como asbestosis, un cáncer que afectaba a los pulmones entre otras dolencias, empezó la debacle y prohibición de utilizar amianto. Básicamente su peligrosidad está en la manipulación de sus fibras en la extracción, en el corte o roturas, y es que sus fibras tienen una forma que al respirarse, se “clavan” en nuestros tejidos, y sobre todo al llegar a los pulmones es imposible de eliminar.

Durante esta época se habían sumado a los lubricantes naturales, la silicona, que no aguantaba mucha temperatura, pero con un gran poder de lubricación.

En el próximo artículo seguiremos con los 80, los 90 y más…

Más cosas sobre estanqueidad

Artículos anteriores: ¿Qué es la estanqueidad?

Tras todo lo dicho en el artículo anterior ¿qué pensaríais si os digo que la falta de estanqueidad provoca al año millones de euros de pérdidas? Pues sí, es así…

Habitualmente se representa una fuga como un iceberg. La punta que vemos corresponde a la fuga que podemos ver, oler,o sentir (si nos pegamos la hostia), pero por debajo encontramos consecuencias como:

  • costes de mantenimiento. Lo que cuesta arreglar la fuga, incluyendo la mano de obra, equipos, etc.
  • costes de producción. Lo que se pierde de producto en la fuga, y lo que se pierde porque el equipo esta parado.
  • riesgos medioambientales. Si las fugas son ecológicamente peligrosas, podéis imaginar…
  • riesgos de accidente. Una fuga puede provocar accidentes por peligrosidad del producto, por temperatura, por resbalamiento…
  • problemas de calidad. Problemas derivados de la pérdida de cantidad de un componente en el proceso, y por tanto en el producto final, o por la contaminación de un componente sobre otro.
  • aumento del consumo energético. Con fugas, una instalación necesita aumentar la presión, la velocidad, la temperatura…eso significa que tendremos una mayor demanda sobre los equipos, y por tanto un mayor consumo energético…
  • reducir la disponibilidad del equipo. La disponibilidad es un indicador que nos marca el tiempo disponible para producir de un equipo (si esta averiado o fugando, no suele estar disponible).
  • reducción del rendimiento. Los equipos e instalaciones están diseñados para unos parámetros de trabajo (luego los ingenieros montan lo que les da la gana), y siendo generalmente máquinas mecánicas, tienen un rendimiento que mide cuanta de la energía que recibe el equipo, la convierte para nuestro propósito. Las fugas, reducen ese porcentaje drásticamente.

Podría afinar bastante más, pero a grandes rasgos estos són los puntos más fácilmente reconocibles a la hora de evaluar que significa “tener fugas” en una planta. Aunque es posible que me deje alguno, ya sabes…

Espero que a partir de ahora, cuando detectéis una fuga, corráis a repararla, o a buscar ayuda para que lo hagan…

Gracias a wili_hybrid

Gracias a wili_hybrid

¿Qué es la estanqueidad?

Antes de empezar, acordaremos entre todos, que la estanqueidad, es una cualidad por la que determinamos si algo tiene fugas o posibilidad de tenerlas, o no. O sea, si tenemos estanqueidad, no hay fugas; si no hay estanqueidad, tenemos fugas… ¡fácil!

Para ayudar a darnos cuenta de la importancia de la estanqueidad, y lo vital que puede llegar a ser, realizaré una analogía con el cuerpo humano (analogía no tiene nada que ver con ano). En nuestro cuerpo tenemos varios sistemas que se dedican al transporte de líquidos, por ejemplo el sistema cardiovascular, que hace circular la sangre por nuestro cuerpo.

En ese sistema, el corazón hace de bomba, igual que en la industria, y su función es introducir continuamente presión en el sistema, igual que en la industria. Sin entrar muy a fondo en anatomía, consideramos que nuestro cuerpo no “fuga” sangre si todo funciona correctamente, igual que en la industria, y que el líquido que se propulsa tiene una serie de funciones que realiza en su recorrido, igual que en la industria. En resumen, tenemos estanqueidad, y, importante, tenemos equilibrio (quedaros con esta frase que será importante). Como consecuencia las cosas funcionan correctamente.

Entonces ¿si nos cortamos en un dedo cortando queso? Adiós a la estanqueidad, y al equilibrio, igual que en la industria (lo siento por la frase, pero es más fácil copiar y pegar que explicar dos cosas a la vez). Si la fuga es pequeña, no habrá problemas, vendrán las plaquetas y repararán, en la industria los llamamos técnicos de mantenimiento y son un poco más grandes que las plaquetas. La consecuencia de una fuga, sin definir niveles, las cosas NO funcionan correctamente.

He pensado en varios ejemplos más allá del corte en el dedo, pero me acercan al gore, y no van a aportar nada.

En la industria, podemos tener fugas por muchas causas, y en muchas instalaciones o equipos, por eso es de vital importancia entender que significa la estanqueidad, y conocer como prevenirla y solucionar, a eso dedicaré algunos artículos.

Un último apunte, la palabra fuga, implica problema, porque es algo imprevisto y incorrecto desde el punto de vista de funcionamiento normal, por lo tanto requiere de acciones.

Ahí va un ejemplo de falta de estanqueidad gracias a UNAI_78.

Artículos posteriores: Más cosas sobre estanqueidad